Semi-supervised structured output prediction by local linear regression and sub-gradient descent

نویسندگان

  • Yihua Zhou
  • Jingbin Wang
  • Lihui Shi
  • Haoxiang Wang
  • Xin Du
  • Guilherme Silva
چکیده

We propose a novel semi-supervised structured output prediction method based on local linear regression in this paper. The existing semi-supervise structured output prediction methods learn a global predictor for all the data points in a data set, which ignores the differences of local distributions of the data set, and the effects to the structured output prediction. To solve this problem, we propose to learn the missing structured outputs and local predictors for neighborhoods of different data points jointly. Using the local linear regression strategy, in the neighborhood of each data point, we propose to learn a local linear predictor by minimizing both the complexity of the predictor and the upper bound of the structured prediction loss. The minimization problem is solved by sub-gradient descent algorithms. We conduct experiments over two benchmark data sets, and the results show the advantages of the proposed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-supervised learning of local structured output predictors

In this paper, we study the problem of semi-supervised structured output prediction, which aims to learn predictors for structured outputs, such as sequences, tree nodes, vectors, etc., from a set of data points of both inputoutput pairs and single inputs without outputs. The traditional methods to solve this problem usually learns one single predictor for all the data points, and ignores the v...

متن کامل

Bethe Projections for Non-Local Inference

Many inference problems in structured prediction are naturally solved by augmenting a tractable dependency structure with complex, non-local auxiliary objectives. This includes the mean field family of variational inference algorithms, softor hard-constrained inference using Lagrangian relaxation or linear programming, collective graphical models, and forms of semi-supervised learning such as p...

متن کامل

Prediction-Constrained Training for Semi-Supervised Mixture and Topic Models

Supervisory signals have the potential to make low-dimensional data representations, like those learned by mixture and topic models, more interpretable and useful. We propose a framework for training latent variable models that explicitly balances two goals: recovery of faithful generative explanations of high-dimensional data, and accurate prediction of associated semantic labels. Existing app...

متن کامل

Supervised Nonlinear Factorizations Excel In Semi-supervised Regression

Semi-supervised learning is an eminent domain of machine learning focusing on real-life problems where the labeled data instances are scarce. This paper innovatively extends existing factorization models into a supervised nonlinear factorization. The current state of the art methods for semi-supervised regression are based on supervised manifold regularization. In contrast, the latent data cons...

متن کامل

Input Output Kernel Regression: Supervised and Semi-Supervised Structured Output Prediction with Operator-Valued Kernels

In this paper, we introduce a novel approach, called Input Output Kernel Regression (IOKR), for learning mappings between structured inputs and structured outputs. The approach belongs to the family of Output Kernel Regression methods devoted to regression in feature space endowed with some output kernel. In order to take into account structure in input data and benefit from kernels in the inpu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1606.02279  شماره 

صفحات  -

تاریخ انتشار 2016